

Behavior of Continuously Reinforced Concrete Pavement under Environmental Loadings

Md Saiful Islam¹, Rajesh Chakraborty², Alif Bin Hussain¹, and Jung Heum Yeon¹

¹Ingram School of Engineering, Texas State University

²Materials Science, Engineering, and Commercialization Program, Texas State University

Introduction

- Continuously reinforced concrete pavement (CRCP) is a portland cement concrete (PCC) structure with continuous longitudinal steel, widely used in Texas for its durability, low life-cycle cost, and easy maintenance.
- Environmental loadings, such as variations in temperature and moisture, cause slab warping and curling, influencing the behavior and performance of CRCPs.

Objective / Methodology

- An 8-ft wide section out of a 1,268-ft single-day constructed CRCP section was selected for sensor installation to investigate the behavior of the CRCP.
- Concrete and steel behavior were measured using vibrating wire strain gages, steel strain gages, and thermocouples.

IH-20 Project, Sweetwater, Texas

Field gage setup

Results / Conclusions

- A horizontal crack was observed at the steel depth with the formation of a transverse crack after 48 hours of concrete casting.
- Upon slab expansion during summer, a self-restraining effect at the crack interface was observed (Figures 1 and 2), which is attributed to the low setting temperature of the concrete for this winter-placed section.
- Concrete and steel strains at transverse cracks were influenced by the formation of adjacent transverse cracks (Figure 5 and 6).
- Transverse crack stopped propagating at the inner side of the section, resulting in a partial depth crack.
- Average crack spacing decreased significantly over the first 35 days after concrete casting (Figure 7) and then stabilized thereafter.
- findings provide critical These insights into the behavior performance of CRCP.

Figure 4

Figure 6

References / Acknowledgements

----- Out Mid

Figure 5

—— Out Top

Lee, H., Koirala, N., Rouzmehr, F., Jabonero, C., & Won, M. C. (2023). Optimizing reinforced concrete pavement (CRCP) (No. FHWA/TX-23/0-7026-1). Texas Tech University. Center for Multidisciplinary Research in Transportation.

Suh, Y. C., Hankins, K., & McCullough, B. F. (1992). Early-age behavior of continuously reinforced concrete pavement and calibration of the failure prediction model in the CRCP-7 program (No. 1244-3). University of Texas at Austin. Center for Transportation Research.

*This study is sponsored by Texas Department of Transportation (TxDOT) under Research Project 0-7206: "Develop Optimum 2-Mat Reinforcement Design in Continuously Reinforced Concrete Pavement (CRCP)".

TEXAS STATE

Age of concrete (days)

Figure 7

